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Abstract
We investigate transport properties of a trilayer made of a d-wave super-
conductor connected to two ferromagnetic electrodes. Using Keldysh
formalism we show that crossed Andreev reflection and elastic cotunnelling
exist also with d-wave superconductors. Their properties are controlled by
the existence of zero-energy states due to the anisotropy of the d-wave pair
potential.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Transport in superconductor–ferromagnetic hybrid systems has received great attention in the
last few years due to the progress in nanotechnology which made possible the fabrication and
characterization of various heterostructures [1–5].

During the last few years phase-sensitive tests have shown that the order parameter
in cuprate superconductors is predominantly of a d-wave symmetry [6–9]. In d-wave
superconductors the zero bias conductance peak (ZBCP) observed in the tunnelling spectra
results from zero-energy states (ZES) that are formed due to the sign change of the order
parameter in orthogonal directions in k space. The ZBCP depends on the orientation of the
surface and does not exist for s-wave superconductors [10–15].

In d-wave superconductor ferromagnet junctions the ZBCP is suppressed by the increase
of the exchange field of the ferromagnet [16–19]. This can be understood from the fact that
increasing spin polarization in the ferromagnetic electrode suppresses Andreev reflection and
therefore suppresses the ZBCP, which is due to the fact that the transmitted quasiparticles
are subject to the sign change of the order parameter. Moreover, in ferromagnet/d-wave
superconductor/ferromagnet double junctions, the quasiparticle current is enhanced compared
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to the normal state because of ZES [20]. Very recently a circuit theory of unconventional
superconductors has been presented [21].

Keldysh formalism has been applied to normal metal-s-wave superconductor
junctions [22] and in multiterminal configurations where one s-wave superconductor is
connected to several ferromagnetic electrodes [23–27]. The conductance of multiterminal
hybrid structures is due to two types of processes:

(i) crossed Andreev reflection in which Cooper pairs are extracted from the superconductor.
The spin-up electron of the Cooper pair tunnels in a spin-up ferromagnet and the spin-down
electron tunnels in a spin-down ferromagnet;

(ii) elastic cotunnelling in which a spin-σ electron from one electrode is transferred as a spin-σ
electron in another electrode.

The purpose of the present work is to investigate transport properties of a ferromagnet/d-
wave superconductor/ferromagnet double junction via Keldysh formalism. We find that
crossed Andreev reflection and elastic cotunnelling are influenced by the d-wave symmetry of
the order parameter in the sense that both processes are mediated by ZES formed for certain
orientations of the d-wave order parameter.

This paper is organized as follows. In section 2 we introduce surface Green functions. In
sections 3 and 4 we describe transport theory and present the results. Concluding remarks are
given in the last section.

2. Surface Green functions

The quasiparticle properties of d-wave superconductors are influenced by interfaces and
surfaces: due to the anisotropy of the order parameter the quasiparticles that are reflected
from the surface or transmitted through the interface are subject to the sign change of the
order parameter. Therefore surface properties are different from bulk properties and we use
in transport theory the surface Green functions that take into account the contributions of
all waves that propagate close to the surface [28, 29]. Green function techniques have been
used to calculate the conductance of d-wave superconductors near impurities [30, 31]. Also
surface quasiclassical Green functions have been used in the calculation of the Josephson
current between d-wave superconductors [32–35]. In our case this Green function is inserted
in a three-node ballistic circuit that is used to describe the transport properties of the hybrid
structure containing a d-wave superconductor.

The form of the local retarded surface Green function matrix for a d-wave superconductor is
the following, for smooth interface, with momentum conservation in the plane of the interface:

ĝxx,R (E, θ) =
(

g f

f̄ g

)
. (1)

It obeys the Eilenberger equation [36] and satisfies the normalization condition ĝ2 = 1. It can
be parametrized as follows:

g = 1 − ab

1 + ab
, f = 2a

1 + ab
, f̄ = 2b

1 + ab
, (2)

where the a(x, θ) and b(x, θ) satisfy the Riccati equations [37]

h̄vF cos(θ)
da

dx
− 2iEa + �∗a2 − � = 0 (3)

h̄vF cos(θ)
db

dx
+ 2iEb − �b2 + �∗ = 0, (4)
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Figure 1. The geometry of the junction involving the d-wave superconductor and two ferromagnetic
electrodes of full spin polarization as indicated in the figure by up and down arrows. The orientation
of the magnetization of the ferromagnetic electrodes can be parallel or antiparallel. The excitation
at x gives rise to several outgoing trajectories θ . In the figure only one of these trajectories is
presented. β is the orientation of the d-wave order parameter shown also in the figure with respect
to the direction x . The electron like quasiparticle 2 is reflected as a hole like quasiparticle 1 and an
electron like quasiparticle 3. The labels a and b in the figure correspond to the electrodes a and b,
respectively.

where vF is the Fermi velocity. We assume for simplicity that the gap function � is constant.
Then the spatially independent a, b functions are found as

a(0, θ) = i(E − ε+ sgn E)

�+(θ)
(5)

b(0, θ) = i(E − ε− sgn E)

�∗−(θ)
, (6)

where θ is the angle between the normal to the interface and the trajectory of the quasiparticle,
�+(θ) = �(θ)(�−(θ) = �(π−θ)) is the pair potential experienced by the quasiparticle along
the trajectory θ(π − θ) and ε± = √

E2 − �±(θ)2. In the case of dx2−y2 -wave superconductor

�(θ) = �0 cos[2(θ − β)], (7)

where β denotes the angle between the normal to the interface and the x axis of the crystal.
Then g and f Green functions are calculated from equations (2).

In fact, in the transport equations we should average over the Fermi surface in order to
include the details of the order parameter symmetry. We have calculated the density of states
averaged over the Fermi surface ρxx

g = 〈Re gxx,R (E, θ, )〉. In figure 2 the density of states ρxx
g

is plotted for different orientations of the order parameter β = 0 and π/4. A ZEP is formed for
β = π/4 due to sign change of the pair potential. A small imaginary or effectively dissipative
term (δ = 0.01) was added in the energy in order to make this peak visible.

In order to study the effect of the angular dependence of the transmission coefficient we
calculate the Fermi surface averaged density of states ρxx,D

g defined as

ρxx,D
g =

∫ π/2

−π/2
dθ D(θ)(Re gxx,R (E, θ)),

where D(θ) = sin2(θ) [38]. We see that the density of states is suppressed when this coefficient
is included in the calculation (see figure 2). However, we do not expect the transport properties
to change qualitatively compared to the case where the transmission is independent of the angle
(see figure 2). In the following we use D(θ) = 1. Transport can probe the symmetry of the
d-wave order parameter if we consider the orientation of the d-wave order parameter β as a
variable.
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Figure 2. (a) The full curve represents averaging over the Fermi surface density of states ρxx
g for

β = π/4. A well defined ZEP exists. We have put a small imaginary part δ = 0.01 in the energy ω

of the Green function. The broken curve represents the ρxx
g averaged over the Fermi surface with

an angular depended transmission coefficient. (b) The same as in (a) but for β = 0.

The ferromagnetic electrodes are described by the Green function

ĝ R,A = ∓iπ

[
ρ1,1 0

0 ρ2,2

]
, (8)

where ρ1,1 and ρ2,2 are, respectively, the spin-up and spin-down densities of states.

3. Transport theory

We use a Green function method to describe transport in a system made of two ferromagnetic
electrodes connected to a d-wave superconductor (see figure 1). We first solve the Dyson
equation which, in a 2 × 2 Nambu representation, has the following form for the advanced
(Ĝ A) and retarded (Ĝ R) Green functions [39, 40]:

Ĝ R,A = ĝ R,A + ĝ R,A ⊗ 
̂ ⊗ Ĝ R,A. (9)
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̂ is the self-energy that contains the coupling of the tunnel Hamiltonian. The tunnel
Hamiltonian associated to figure 1 takes the form

W =
∑

σ

[ta,xc+
a cx + tx,a c+

x ca + tb,x c+
b cx + tx,bc+

x cb].

ĝ in equation (9) is the Green functions of the disconnected system (i.e. with 
̂ = 0). The
symbol ⊗ includes a summation over the nodes of the network and a convolution over time
arguments. Since we consider stationary transport this conclusion is transformed into a product
by Fourier transform. Ĝ is the Green functions of the connected system (i.e. with 
̂ �= 0).
The Keldysh component is given by [40]

Ĝ+,− = [ Î + Ĝ R ⊗ 
̂] ⊗ ĝ+,− ⊗ [ Î + 
̂ ⊗ Ĝ A]. (10)

The current is related to the Keldysh Green function [40] by the relation

Ia,x = e

h

∫
dω [t̂a,x Ĝ+,−

x,a − t̂x,a Ĝ+,−
a,x ]σ z. (11)

At this stage of the calculation no explicit angular form of the tunnelling matrix elements was
assumed. The effect of the angular dependence of the transmission coefficient in the transport
properties was already discussed in the previous section. The elements of the differential
conductance matrix that we want to calculate are given by

Gai ,a j (Va, Vb) = ∂ Iai

∂Va j

(Va, Vb). (12)

The principle of the calculation of Gai ,a j (Va, Vb) is similar to the s-wave case [23]. Depending
on the orientation of the magnetizations in the two ferromagnetic electrodes we can distinguish
the following cases.

3.1. Antiparallel magnetizations

If the two ferromagnetic electrodes have an antiparallel spin orientation we find for the elements
of the conductance matrix

Ga,a = +4π2|ta,x |2ρa,a
1,1 ρx,x

g

× 1

DADR
[1 − |tb,x |2gb,b,A

2,2 gx,x,A ][1 − |tb,x |2gb,b,R
2,2 gx,x,R ] (13)

− 2iπ |ta,x |2|tb,x |2ρa,a
1,1 gb,b,A

2,2

× 1

DADR
f x,x,A f x,x,A [1 − |tb,x |2gb,b,R

2,2 gx,x,R ] (14)

+ 2iπ |ta,x |2|tb,x |2ρa,a
1,1 gb,b,R

2,2

× 1

DADR
f x,x,R f x,x,R [1 − |tb,x |2gb,b,A

2,2 gx,x,A ], (15)

and

Ga,b = −4π2|ta,x |2|tb,x |2 1

DADR
ρ

a,a
1,1 ρ

b,b
2,2 f x,x,R f x,x,A . (16)

The expression of the determinant DR is the following:

DR = 1 − |tb,x |2gb,b,R
2,2 gx,x,R − |ta,x |2ga,a,R

1,1 gx,x,R

+ |tb,x |2|ta,x |2ga,a,R
1,1 gb,b,R

2,2 (gx,x,R 2 − f x,x,R 2
), (17)
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and a similar expression holds for DA. ρ
a,a
1,1 , ρ

b,b
2,2 , ρx,x

g are the density of states of electrodes
a, b and the superconductor, respectively. Contrary to the s-wave case ρx,x

g is not zero for
E < �0 and the term equation (13) contributes also to the quasiparticle current even below the
superconducting gap. In the s-wave case there are simple relations between the conductance
matrix elements (for instance Ga,a = Ga,b), which means that the transport is mediated only
by Cooper pairs [23]. In the d-wave case such relations are no longer valid because of
the quasiparticle tunnelling. Also, depending on the trajectory angle θ the different terms
contribute to the Andreev current and the quasiparticle current. Moreover in the present case
the propagators f x,x,A,(R), gx,x,A(R) have a d-wave symmetry. In equation (16) Gab depends
on f x,x,R f x,x,A and therefore the corresponding matrix element is associated with crossed
Andreev reflections.

3.2. Parallel magnetizations

If the electrodes have a parallel spin orientation, we find

Ga,a = +4π2|ta,x |2ρa,a
1,1 ρx,x

g (18)

× 1

DADR
[1 − |tb,x |2gb,b,A

1,1 gx,x,A ][1 − |tb,x |2gb,b,R
1,1 gx,x,R ]

− 2iπ |ta,x |2|tb,x |2ρa,a
1,1 gb,b,A

1,1

× 1

DADR
gx,x,A gx,x,A [1 − |tb,x |2gb,b,R

1,1 gx,x,R ]

+ 2iπ |ta,x |2|tb,x |2ρa,a
1,1 gb,b,R

1,1 (19)

× 1

DADR
gx,x,R gx,x,R [1 − |tb,x |2gb,b,A

1,1 gx,x,A ], (20)

and

Ga,b = − 4π2|ta,x |2|tb,x |2 1

DADR
ρ

a,a
1,1 ρ

b,b
1,1 gx,x,R gx,x,A . (21)

The determinant DR is given by

DR = 1 − |tb,x |2gb,b,R
2,2 gx,x,R − |ta,x |2ga,a,R

1,1 gx,x,R . (22)

In equation (21) Gab depends on gx,x,R gx,x,A and therefore the corresponding
matrix element is associated to cotunnelling processes. The elements Gb,a,Gb,b of the
conductance matrix which describe transport through electrode b are derived from the
corresponding expressions for Ga,a,Ga,b by the substitution a ↔ b for the parallel
alignment. For the antiparallel alignment the following set of substitutions should be made:
gb,b,A(R)

2,2 ↔ ga,a,A(R)

1,1 , ta,x ↔ tb,x , µa ↔ µb.

4. Results

4.1. Antiparallel magnetizations

We consider the ferromagnet/d-wave superconductor/ferromagnet double junction shown in
figure 1. For the antiparallel alignment of the magnetizations in the two ferromagnetic
electrodes the conductance depends on the orientation β as well as on the transparencies
of the interfaces ta,x , tb,x . For β = π/4 (see figure 3(a)) the surface Green function has a pole
at E = 0 and the conductance (both Gaa and Gab) acquires a ZEP. The conductance Gaa above
the gap depends only on the density of states ρxx

g and for large energies it has a finite value.
Gab depends only on crossed Andreev reflection processes and is zero above the gap.
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Figure 3. ConductanceGab ,Gaa for the antiparallel spin orientation of the ferromagnetic electrodes,
as a function of E (in units of �0) for different orientations of the d-wave order parameter: (a)
β = π/4, (b) β = 0. The hopping element is 0.01.

For β = 0 (see figure 3(b)) similarly to the s-wave case no ZES are formed at the interface
and both Gaa and Gab take relatively small values. However the line shape of the conductance
is V and is determined by ρxx

g . In the s-wave case the line shape of the conductance is U and a
peak just below the energy gap exists [23]. In this sense the results for s-wave are qualitatively
different than for d-wave with β = 0 due to the anisotropy of the d-wave order parameter.

To summarize, transport for antiparallel magnetizations is due to crossed Andreev
reflection in which a spin-up electron from one electrode is transferred as a spin-down hole
in the other electrode, and is influenced by ZES that are formed at the interface due to the
sign change of the order parameter. The enhancement of the quasiparticle current at E = 0
for β = π/4 in the ferromagnet/d-wave superconductor/ferromagnet double junction has also
been found recently using the scattering approach [20].

4.2. Parallel magnetizations

The results concerning the ZES are not modified qualitatively when the orientation of the
magnetizations is parallel (see figure 1). The conductance above the gap is determined mainly
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Figure 4. Conductance Gab,Gaa for the parallel spin orientation of the ferromagnetic electrodes,
as a function of E (in units of �0) for different orientations of the d-wave order parameter: (a)
β = π/4, (b) β = 0. The hopping element is 0.01.

by ρxx
g . For β = 0 (see figure 4(b)) the results are similar to the case for the antiparallel

alignment.
To summarize, transport for parallel magnetizations is due to elastic cotunnelling in which

an electron from electrode a is transmitted as an electron in electrode b, and is influenced by
the ZES that are formed for certain orientations of the d-wave order parameter. For β = π/4
the interface at large values of the barrier strength becomes transparent due to bound states
formed because of the sign change of the order parameter in orthogonal directions in k-space.
This property does not exist for s-wave superconductors.

5. Relevance to experiment

Multiterminal superconductor ferromagnet structures can be used to test the specific physics
associated with the symmetry of a d-wave superconducting order parameter, because transport
through the ferromagnetic electrodes has a strong directional dependence. The orientation of
the electrodes can be used to probe the symmetry of the order parameter.
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The line shape of the conductance spectra is V-like which is a fingerprint of d-wave
systems. This has already been tested in experiments [11].

Moreover we used a theoretical description that is valid not only in the tunnel regime but
also for large interface transparencies. We have found a ZEP in the conductances Ga,b, Ga,a in
the tunnel regime in the two cases of parallel and antiparallel spin orientations, for the β = π/4
orientation.

6. Conclusions

Using a Keldysh formalism we have shown that in the ferromagnet/d-wave superconduc-
tor/ferromagnet double junction, transport is due to crossed Andreev reflection and elastic
cotunnelling and is mediated by ZES that are formed at the interface due to the sign change of
the order parameter.

We have used the local surface Green function given by equation (1) and we find no
particular relation between the conductances in the parallel and antiparallel alignments. In
the s-wave case and for extended contacts it is possible to show that the average current due
to crossed Andreev reflection in the antiparallel alignment is equal to the average current due
to elastic cotunnelling in the parallel alignment [23, 26]. Discussing multichannel effects for
d-wave superconductors is left as an important open question.
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